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AbtrscL We study the role of ( 1 , l )  5aded tensor field T in the analysis of complete 
integrability of dynamical systems with fcrmionic variables. We find that such a tensor 
T can be a recursion operator if and only if T is even as a gaded map, namely, if and 
only if p ( T )  = 0. We clarify this fact by constructing an odd tensor for two examples, 
a supersymmetric lbda chain and a supersymmetric harmonic oscillator. We expliatly 
show that it cannot be a recursion operator since it dou, not allow new constants of 
motion to be built from the frst  two, in mntrast to what usually happens with ordinary, 
i.e. non-paded systems. 

1. Inbodnetion 

In recent years there has been renewed interest in completely integrable Hamiltonian 
systems, specially in connection with the study of integrable quantum field theory, 
Yang-Baxter algebras and, more recently, quantum groups. 

Integrability criteria available both in finite and infinite dimensions have been 
established by methods directly related to group theory and to familiar procedures 
in classical mechanics [1,2], by looking at soliton equations as dynamical systems on 
(infinite-dimensional) phase manifold [8,9,12,13,18,26]. This last approach was also 
suggested by the occurrence in the inverse scattering transform of a peculiar operator, 
the so-called recursion operator (161, which naturally fits in this geometrical setting 
as a mixed tensor field on the phase manifold. This tensor has to satis& several 
requirements, the most important being that its Nijenhuis torsion [11,22] vanishes. 

There have been several attempts to analyse integrability of fermionic dynami- 
cal systems (see for instance [6,15,19]), and to extend to such systems [17], in an 
algorithimic Sense at least, results and techniques used for bosonic dynamics based 
on the role of recursion operators. In particular, one would lie to define a graded 
Nijenhuis torsion. 

In this paper we address these issues. We show that a mixed (1,l) graded tensor 
field T can act as a recursion operator if and only if T is an even map. 

0M5-4470/9Z/l64413+11$04.50 @I 1992 IOP Publishing Ud  4413 
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There are dynamical systems, like supersymmetric Witten's dynamics [28] which 
allow a bi-Hamiltonian description with an even and odd Hamiltonian function and 
in terms of an even and an odd Poisson structure respectively (so that the dynamical 
vector field is always even) [25,27]. This allows construction of an odd tensor field 
which could be a good candidate as a recursion operator. We explicitly show that this 
is not possible. 

The paper is organized as follows. First, we define notation and recall the formu- 
lation of complete integrability in terms of a ( 1 , l )  tensor field available in the bosonic 
case. After a r h m 6  of graded differential calculus and graded Poisson structures, we 
analyse a supersymmetric harmonic oscillator and a supersymmetric Toda chain (both 
are examples of Witten's supersymmetric dynamics). We then prove that for an odd 
( 1 , l )  tensor, a ( 2 , l )  tensor corresponding to its torsion (graded-Nijenhuis torsion) 
cannot be defined and that a graded ( 1 , l )  tensor cannot be a recursion operator 

I. :_ TY-",,.. ---..-... -....A.. 
ULIIKX3 I1 W GVGll. rllldlly, WG prC3GUl WUIG WIILIUSIUIW. 

2. Complete integrability and recursion operators in the hosonie case 

Complete integrability of Hamiltonian systems with finitely many degrees of freedom 
is exhaustively characterized by the Lioude-Arnold theorem [1,2]. Here we briefly 
recaii an aiternative characterization in terms of an invariant (under the dynamicai 
evolution) (1 , l )  tensor field T .  Examples of such tensors can also be constructed 
for systems with infinitely many degrees of freedom, so that the approach described 
could be of use in the latter cases as well. 

We shall deal only with smooth, i.e. Cm objects, and notation will follow as closely 
as possible that of [ l ]  and [U)]. In particular if M is a (finitedimensional) ordinary 

Lie algebra of vector fields, by X( M)' its dual of forms and by q*( M) the mixed 
( 1 , l )  tensor fields. 

Associated with every T E 7: ( M) there are two endomorphisms of X( M) and 
X ( M ) '  which are defined by 

we by ?( ,.~ ring of red vdued iunciiom on by x( ,.",. 

F :  X ( M )  - X ( M )  

T ( x , ~ )  =: ?x_] =: x J Ta  v x E X ( M )  a E x ( M ) ' .  (1) 

[11,221 
N T ( X , Y ; a )  =: H T ( X , Y ) J a  (2) 

T :  X ( M ) '  - X ( M ) *  

The Nijenhuis tensor (or torsion) of T is the ( 2 , l )  tensor field N, defined by 

where H, : X( M )  x X( M )  - X( M )  is the 7( M)-linear map given by 
H , ( X , Y ) = :  ? ' [ X , Y ] + [ ? X , ? Y ] - ? [ ? X , Y ] - f [ X , ? ' Y ] .  (3) 

Equivalently, this can be written as 
c_ 

H , ( X , Y ) = [ L i ; , T - ~ ' O L , T ] ( Y )  V X , Y E X ( M ) .  (4) 

To simplify our notation, in the following, when no confusion arises, we shall 

From (2) it is clear. that the vanishing of the tensor NT is equivalent to the 

The following proposition has been proved in [9]: 

denote both the endomorphisms ? and 

vanishing of H,, namely NT 

with the same symbol, namely T. 

0 iff H, z 0. 



Complde integrabiliry of fermwnic dymicaI  vstems 4415 

Proposition 1. A dynamical vector field r which admits a mixed tensor field T, which 
is invariant (L,T = 0), with vanishing Nijenhuis torsion, diagonalizable with doubly 
degenerate eigenvalues A, without stationary points (d X # 0) is separable integrable 
and Hamiltonian, i.e. is a separable completely integrable Hamiltonian system. 

The proof is given observing that: N, = 0 implies the integrability, in the Frobe- 
nius sense, of the eigenspaces of T L,T = 0 implies the separability of r along the 
eigenmanifolds in dynamics with one degree of freedom, each of which has a constant 
of motion. 

A ( 1 , l )  t e m r  field with the previously stated properties, acts as a 'recursion 
operator' [12,18], i.e. when iteratively applied to r one produces symmetries rk = 
@r or constan$ of motion H, by dH, = TikdH. 

The main property of the tensor field T in the analysis of complete integrability 
of its infinitesimal automorphisms is the vanishing of its Nijenhuis tensor N, = 0. 
It is then plausible that a suitable generalization of such a condition could play 
an important role in analysing the integrability of dynamical systems with fermionic 
degrees of freedom. Moreover, it seems natural to think that such a generalization 
could come from a graded generalization of some of the following relations which 
are available in the bosonic case: 

(a) N, = 0 
(b) N, = 0, d(TdH) = 0 =+ d(TkdH) = 0. 
(c) N, = 0 e d, o d,  = 0; here d, is a suitable generalization of the exterior 

derivative associated with any  (1 , l )  tensor field [21]. 
(d) T =: A;' o A,, N, = 0 e A, + A, satisfies the Jacobi identity. Here A ,  

and A, are two Poisson structures. 
(e) w ( X ,  Y )  =: [ T X ,  Y ]  + [ X ,  T Y ]  - T [ X ,  Y ] ;  T w ( X ,  Y )  = [ T X ,  T Y ]  (this 

is the same as NT = 0) CJ [ X , Y ] ,  =: [ X , Y ]  -t X w ( X , Y )  satisfies the 
Jacobi identity for any value of the real parameter A. 

One could expect that some, if not all, of the previous relations do not hold true 
in the graded situation. 

Eefore we proceed with the anaiysis oi the graded iu'ijeniruis condition we siiaii 
give a brief review of the graded differential calculus on supermanifolds which will 
be followed by the study of some simple examples. 

Im T is a Lie algebra. 

3. Graded ditkrential calculus 

We review some fundamentals of supermanifold theory [U231 while referring to the 
literature for a mathematically coherent definition [3,24]. In the following, by graded 
we shall always mean Z,-graded. 

The basic algebraic object is a real exterior algebra B,  = ( E L ) o  fB ( E,), with 
L generators. An (m,n)-dimensional supermanifold is a topological manifold S 
--Anllnrl +ha L...nPmnnr~) 
UI"U*"CU ""ll .I." .I*._. YYY*.Up".- 

B,""' = (EL)?  x ( E L ) :  (5) 

by means of an atlas whose transition functions fulfil a suitable 'supersmoothness' 
condition. A supersmooth function f : U c E,"," -+ E,  has the usual superfield 



4416 G Landi et a1 

expansion 
n 

a=1 

where the xs are the even (Grassmann) coordinates, the Os are the odd ones, and 
the dependence of the coefficient functions f,,,(z) on the even variables is fved by 
their values for real arguments. 

We shall denote by E( S) and E( U) the graded ring of supersmooth B,-valued 
functions on S and U c S, respectively. 

The class of supermanifolds which, up to now, turns out to be relevant for appli- 
cations in physics is given by the De Witt supermanifolds. They are defined in terms 
of a coarse topology on E r ' " ,  called the De Witt topoiogy, whose open sets are 
the counterimages of open sets in Rm through the body map um-" : Bran - Rm. 
An (m, n) supermanifold is De Witt if it has an atlas such that the images of the 
coordinate maps are open in the De Witt topology. A De Witt (m, n) supermanifold 
is a locally trivial fibre bundle over an ordinary m-manifold So (called the body of 
S) with a vector fibre [23]. It is these not surprising that, modulo some technicalities, 
a De Witt supermanifold can be identified with a Berezin-Konstant supermanifold 

The graded tangent space TS is constructed in the following manner. For each 
x E S, let G ( + )  be the germs of functions at I, and denote by T,S the space of 
graded B,-linear maps X : E(.) + E ,  which satisfy the Leibnitz rule. Then, T,S 
is a free graded B,-module of dimension (m,n), and the disjoint union USES T,S 
can be given the structure of a rank (m, n) super vector bundle over S, denoted by 
TS. The sections X ( S )  of TS are a graded G(S)-module and are identified with 
the graded Lie algebra Der g(S)  of derivations of 5(S) .  Derivations (or vector 
fields) are said to be even (or odd) if they are even (or odd) as maps (satisfying in 
addition a graded Leibnitz rule) from E(S) -, E(S). A local basis is given by 

[4,141. 

Remark. Unless explicitly stated, by using a partial derivative we shall always mean a 
left derivative, namely a derivative acting from the left. In general, if zi = (d , Ok), 
when acting on any homogeneous function f E E(S), left and right derivatives are 
related by 

c 

In a similar way one def ies  the cotangent space and bundle. T:S is the space 
of graded B,-linear maps from T,(S) - E ,  and T*S = Uses T S .  T,*S is a 
free graded B,-module of dimension (m,n), while T*S is a rank (m,n) super 
vEtor ;Un& 

are identified with the graded E( S)-linear maps from Der E( S) 4 P( S). They are 
the 1-forms on S. Forms are said to be even (or odd) if they are even (or odd) as 
maps X ( M )  -'AS). 

In general, a p covariant and q contravariant graded tensor is any graded G(S)- 
multilinearmap ~ : x ( s ) x  . . .  XX(S)XX(S) 'X . . .XX(S) ' - - - .E (S)  ( p X ( S )  

J". a- -- ...2--.. ¶,IC\. ,.e n c  ,..̂ " "--rlarl I? /= \  ."rut..ln .,"A l l l G  SGGUUIID A l a )  V L  1 a a= a slaucy y\u)-u~wulr 
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factors and Q X(S)' factors). The collection of all rank ( p , q )  tensors is a graded 
G( S)-module. 

A graded p-form is a skew-symmetric covariant graded tensor of rank p .  We 
denote by W(S) the collection of all p-forms. The ai&r differential on S is 
defined by letting X J  df  = X (  f) Vf E G( S), X E X( S) and is extended to maps 
W(S) -, W + ' ( S ) ,  p >, 0, in the usual way, so that d2 = 0. If Xi E X ( S )  are 
homogeneous elements, 

P+ 1 

i = l  
XIA ... AXptlJdv = : E ( - l ) " ( i ) X i ( X , A  . . i . . A X P + l J ~ )  

By definition one has that p ( d )  = 0. 
The Lie derivative L(.)  of forms is defined by 

L ( , )  : X(S) x nys) - nys) 

L, = X J  o d  + d o X J  V X  E X(S). 

Clearly, p ( L X )  = p ( X ) .  
The Lie derivative of any tensor product can be defined in an obvious manner by 

requiring the Leibnitz rule and can be extended to any tensor by using linearity. 
Suppose now that we have a tensor T E q l ( M )  which is homogeneous of degree 

p ( T ) .  Again we can define two graded endomorphisms of X(S) and X ( S ) '  by the 
formulae (in the following two formulae X ,  Y are homogeneous elements in X( S) 
while a is any element in X( S)') 

f : X ( S ) - X ( S )  T : X ( S ) * - + X ( S ) *  
(12) 

T ( X ,  a )  =: F X  J a =: ( - l ) p ( X ) p ( T ) X J  TQ . 
We could be tempted to define a graded Nijenhuis torsion of T by a relation 

analogous to (2) 

NT(XI Y ;  a )  =: G H T ( X ,  Y ) J  Q 
G 

G ~ T ( ~ ,  Y) =: f * [ ~ ,  Y] + (-1) P(T)P(X)[I?.X,  f Y ]  - I?.[FX, Y ]  (13) 
- ( - l ) p ( T ) p ( X ) F [ X , F Y ] .  

Proposirwn 2. The map OHT : X (  S )  x X( S )  -+ X( S )  defined in (13) is B( S)-linear 
and graded antisymmetric if and only if p(  T )  = 0. 
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Proof. Just compute. 

Remark. When p(T)  = 1, the map defined in (13) is not antisymmetric or linear 
over even functions, nor when it is restricted to even vector fields. Therefore (12) 
and (13) define a graded tensor (which is in addition graded antisymmetric) if and 
only if p(  T )  = 0. 

4. Poisson supermanifold 

We briefly descriie how to introduce super Poisson structures on an (m,n)- 
dimensional supermanifold S 14,171. For additional results see also [SI. As before, 
we shall denote by zi  = ($’,ek), i E {l,. . . , m + n} the local coordinates on S. 
The following proposition is in [4] and can be proved by direct calculations. 

Proposition 3. Let ((w’j(( be a ( m t n )  x ( m t n )  matrix (dependmgupon the point 
z E S) with the following properties: 

(1) the elementsw’j are homogeneouswithparityp(w’j) = p ( z i ) + p ( z J ) + p ( w )  
and p ( w )  not depending on the indices i and j ;  

(2) 

Then, the following bracket 

makes G( S) a Lie superalgebra (Poisson superstructure). 
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We infer from (17) and (18) that, when thought of as elements of the Poisson 
superalgebra, homogeneous elements of G( S )  preserve their parity if p(w) = 0, while 
they change it if p (w)  = 1. 

If the matrix Ilw'jII is regular, then its inverse llwijII , w i j w j k  = 6: , gives the 
components of a symplectic structure w = t d z i  A dzJwji , namely, w is closed and 
nondegenerate with the properties 

and w is homogeneous with parity just equal to p(w).  
n e l e  is 2 h  2 DEk?1K$ theerem [I?] 

propOs~ion 4. Let (S, w )  be an (m, n)-dimensional symplectic manifold with w 
homogeneous. Then 

(1) If p(w) = 0, then dim S = (2r ,n )  and there exist local coordinates such 
that 

(2) If p ( w )  = 1, then dim S = (m,  m) and there exist local coordinates such 
that 

Having a Poisson structure we can deal with Hamilton equations. From (la), if 
H is the Hamiltonian, the corresponding equations are 

... 
i . .  fj 

i =w'J--H ad 

Now we would like to maintain the possibility of explicitly constructing the flow 
of (22). This requires that the dynamical evolution be an even vector field. In hun 
this implies that the Poisson structure and the Hamiltonian function should have the 
same parity; in particular, with an odd Poisson structure we need an odd Hamiltonian 
function. 

5. Examples 

Before we analyse the graded Nijenhuis condition we present a few examples. 



4420 G Landi et al 

5.1. M M  bosonic-fennionic harmonic oscillator 
The mixed bosonicfermionic harmonic oscilator in (2,2) dimensions is described 
with coordinates (q,p,  q,<) and has the following equations of motion 

i = <  i = - v .  (23) 9 = P  p = - q  

Equations (23) can be given two Hamiltonian descriptions. The Hamiltonians are: 
the usuai even one 

H = f(p2 + 9') + i<q (24) 

K = p € +  qv (25) 

and an odd one 

while the two Poisson structures are respectively 

ana 
0 0 0 1  0 0 0 - 1  

A . = ( .  0 0 - 1 0  1 0 .) +=(: : ) .  '(27) 
- 1 0  0 0 1 0 0 0  

We can construct a a mixed invariant tensor field T by 
0 0 1 0  

T = : ~ H ' A K = ( p  0 -i 0 0 1  0 0) 

0 0 0  

%;ever, fiis odd 'Pnv\r fie!!! (p(T)  = 1) is net a repinion operator. One ran e ~ ! y  
find that 
T d K  = d H  

T d H  = -i(dq)< + i(dp)q - i (dv)p+ i(de)q 

symplectic structures (26) and (27) we find that 

(29) 
d ( T d H )  # 0. 

If we evaluate the Poisson brackets of the coordinate variables with the two 

{9,PlH = 1 { P , d H  = -1 {v,q}rf = ' 1 { < , O H  = i  (30) 

{%€lK = 1 I € , d K  = -1 I P , V l K  = -1 I%P}K = 1 (31) 

and 

the remaining ones being identically zero. We see that the sum { , .)+ of the two 
stnrctures is itself a Poison strucare with the property 

{ F ,  G), = -(-l)P(F)p(G){G, F } ,  (32) 

but it has no definite parity. Moreover {., .)+ is degenerate. 
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5.2. Wilten dynamics [28] 
Interesting examples come from supersymmetric dynamics. It has been shown [25,27] 
that the dynamics of Wltten's Hamiltonian systems [28] can be given a bi-Hamiltonian 
description with an even Poisson bracket and Grassmann-even Hamiltonian or with 
an odd bracket and Grassmann-odd Hamiltonians. Instead of considering the general 
case we shall study a supersymmetric Toda chain with coordinates ( q , p ,  q,[). 

The even Hamiltonian is given by 

H = $ ( p 2  + e ( )  + $i.$qe'I2. (33) 
With the even Poisson structure 

the equations of motion read 

i l = P  a ,1.$qe'/2 + = 1. a t  e q / 2  E = -$qeq lz .  (35) p = -Leq - 1.' 

K = p t  + eqI2q L = p q  - @I2.$ F=itq .  (36) 

Then the foiiowing functions are constants of the motion: 

We can use K in (36) (or L) as an alternative Hamiltonian. The corresponding 
symplectic StNCture can be written as 

> _ A  .It >.,.-0l2-\ I J- I I ~ ~ ,  n--o!2\ 3 1. >,, ( J K  u q  I \  U< i d p  ii u q ~ e  .. 'r,, t up I\ uqi-Ae . -+ U J  I\ u m  
= d { d q ( - t )  + d ~ ( 2 e - ~ / ~ q )  + f d H }  (37) 

where f ( q ,  p ,  q, e) is a function explicitly given by 

f = A t +  Bq 

If r is the dynamical vector field of the lbda system, as given by (35), then the 
function f is such that i,d f = e-qI2q and this, in turn, assures that iruK = d K .  

It take some algebra to check that the (1 , l )  tensor field 

T = wK o A H  
:- -..-I. et."+ 
0 UYCll LI.ll.L 

T d H  = d l C  

d ( T 2 d H ) # 0 .  

Again, T in (38) is not a recursion operator. 

(39) 
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6. Super Nijenhuis torsion 

One of the m a t  relevant consequences deriving from a (non-graded) (1-1) tensor 
field T with vanishing Nijenhuis torsion is the possibility of generating sequences of 
exact 1-forms according to 

h p s i t W n  5. 

N,=O d ( T d F ) = O = , d ( T ‘ d F ) = O .  (40) 

E”. Let a be any 1-form. By using the expression of the exterior derivative, after 
some algebra one finds that 

X A Y J d ( T 2 a )  = {XATY+TXAY)Jd(Ta)-{TXATY}Jda 

- H T ( X ? Y ) J a  (41) 

where HT is defined in (3). Assume now that both a and T a  are closed. From (41) 
we see that TZa is closed if and only if H, = 0, namely if and only if the Nijenhuis 
torsion of T vanishes. 

Let us analyse now the graded situation. Suppose T is a graded (1, l )  tensor 
field which is homogeneous of parity p(T) .  Then, if a is any 1-form, by using 
definition (9), after some (graded) algebra, the analogue of (41) reads 

X A Y J d ( T 2 a )  = { ( - l ) p ( T ) p ( Y ) X A T Y  

+ ( - l )p(T)[p(X) tp(Y) lTX A Y } J d ( T a )  
- (-l)p(T)[p(X)+p(T)lTX A T Y J  d a  - ( - l )p (T)  ‘H, (X ,Y)  J a 

-t ( - 1 ) p ( ~ ) p ( ~ ) [ 1 -  ( - I ) P ( ~ ) ] L , ~ ( T Y J ~ )  (42) 

where GH, is defined in (13). 
It is clear then, that for a (1 , l )  odd tensor a (2,l)  tensor corresponding to its 

torsion (super Nijenhuis torsion) can be defined only when p(  T) = 0. The same 
result is attained with the use of the general approach d ,  o d ,  = 0 . 

7. Conclusions 

Summing up, we have shown that there are examples of dynamical systems whose 
dynamical vector field r admits two Hamiltonian descriptions, odd and even, and 
that the tensor field T constructed out of the corresponding Poisson structures is not 
a recursion operator since it cannot generate new integrals of motion after the first 
WO. 

We have also shown that this fact is general and that for a generic graded (1 , l )  
tensor field T a graded Nijenhuis torsion cannot be defined unless T is even. 

From the nature of the proof it seems plausible that a similar theorem should 
hold true also in infinite dimensions. 

The ‘no go’ theorem we have proved in our paper does not exhaust, obviously, 
the analysis of complete integrability for graded Hamiltonian systems. Much more 
attention must be paid, however, in generalizing to the graded case geometrical 
structures which play a relevent and natural role in the non-graded situation. 
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