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Abstract. We study the role of (1, 1) graded tensor field T in the analysis of complete
integrability of dynamical systems with fermionic variables. We find that such a tensor
T can be a recursion operator if and cnly if T is even as a graded map, namely, if and
only if p(T) = 0. We clarify this fact by constructing an odd tensor for two examples,
a supersymmetric Toda chain and a supersymmetric harmonic oscillator. We explicitly
show that it cannot be a recursion operator since it does not allow new constants of
motion to be built from the first two, in contrast to what usually happens with ordinary,
ie. non-graded systems.

1. Introduction

In recent years there has been renewed interest in completely integrable Hamiltonian
systems, specially in connection with the study of integrable quantum field theory,
Yang-Baxter algebras and, more recently, quantum groups.

Integrability criteria available both in finite and infinite dimensions have been
established by methods directly related to group theory and to familiar procedures
in classical mechanics [1,2], by looking at soliton equations as dynamical systems on
(infinite-dimensional) phase manifold [8,9, 12,13, 18,26]. This last approach was also
suggested by the occurrence in the inverse scattering transform of a peculiar operator,
the so-called recursion operator [16], which naturally fits in this geometrical setting
as a mixed tensor field on the phase manifold. This tensor has to satisfy several
requirements, the most important being that its Nijenhuis torsion [11, 22] vanishes.

There have been several attempts to analyse integrability of fermionic dynami-
cal systems (see for instance [6,15,19]), and to extend to such systems [17], in an
algorithimic sense at least, results and techniques used for bosonic dynamics based
on the role of recursion operators. In particular, one would like to define a graded
Nijenhuis torsion.

In this paper we address these issues. We show that a mixed (1,1) graded tensor
field T can act as a recursion operator if and only if T is an even map.
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There are dynamical systems, like supersymmetric Witten’s dynamics [28] which
allow a bi-Hamiltonian description with an even and odd Hamiltonian function and
in terms of an even and an odd Poisson structure respectively (so that the dynamical
vector field is always even) [25,27]. This allows construction of an odd tensor field
which could be a good candidate as a recursion operator. We explicitly show that this
is not possible.

The paper is organized as follows. First, we define notation and recall the formu-
lation of complete integrability in terms of a (1,1) tensor field available in the bosonic
case. After a résumé of graded differential calculus and graded Poisson structures, we
analyse a supersymmetric harmonic oscillator and a supersymmetric Toda chain (both
are examples of Witten’s supersymmetric dynamics). We then prove that for an odd
(1,1) tensor, a (2,1) tensor corresponding to its torsion (graded-Nijenhuis torsion)
cannot be defined and that a graded (1,1) tensor cannot be a recursion operator
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2. Complete integrability and recursion operators in the bosonic case

Complete integrability of Hamiltonian systems with finitely many degrees of freedom
is exhaustively characterized by the Liouville-Arnold theorem [1,2]. Here we briefly
recall an alternative characterization in terms of an invariant (under the dynamical
evolution) (1,1) tensor field 7. Examples of such tensors can also be constructed
for systems with infinitely many degrees of freedom, so that the approach described
could be of use in the latter cases as well.

We shall deal only with smooth, i.e. C= objects, and notation will follow as closely
as possible that of [1] and [20]. In particular if M is a (finite-dimensional) ordinary
manifoid we denote by F{ M) the ring of reai vaiued funciions on A, by X (M) ihe
Lie algebra of vector fields, by X(M)* its dual of forms and by 7}( M) the mixed
(1,1) tensor fields.

Associated with every T € 7;'( M) there are two endomorphisms of X'(M) and
X (M)* which are defined by

T:X(M) — X(M) T:X(M)* — X(M)"
T(X,a)=:TX_la=: X_|Te v X € X(M) acX(M). o)

The Nijenhuis tensor (or torsion) of T is the (2,1) tensor field Ny defined by
[11,22]

Np(X,Y;e) = Hp(X,Y) o )
where Hp : X(M) x X(M) — X(M) is the F( M)-linear map given by

Hp(X,Y)=: T2[X,Y] + [TX,TY]- T(TX,Y]- T[X,TY]. ®
Equivalently, this can be written as

Hp(X, Y)_[L T - ToLXT](Y) VX,Y e X(M). (4)

To simplify our notation, in the following, when no confusion arises, we shall
denote both the endomorphisms T and T with the same symbol, namely T.

From (2) it is clear.that the vanishing of the tensor Ny is equivalent to the
vanishing of Hy, namely Ny = 0 iff Hy =0.

The following proposition has been proved in [9):
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Proposition 1. A dynamical vector field T' which admits a mixed tensor field 7', which
is invariant (LT = (), with vanishing Nijenhuis torsion, diagonalizable with doubly
degencrate eigenvalues \, without stationary points (d A # 0) is separable integrable
and Hamiltonian, i.e. is a separable completely integrable Hamiltonian system.

The proof is given observing that: N = 0 implies the integrability, in the Frobe-
nius sense, of the eigenspaces of T, LT = 0 implies the separability of ' along the
eigenmanifolds in dynamics with one degree of freedom, each of which has a constant
of motion.

A (1,1) tensor field with the previously stated properties, acts as a ‘recursion
q\perator’ [12,18), ie. when iteratively applied to I' one produces symmetries 'y =
T*T or constants of motion H, by dH, = T*dH.

The main property of the tensor field T in the analysis of complete integrability
of its infinitesimal automorphisms is the vanishing of its Nijenhuis tensor Ny = 0.
It is then plausible that a suitable generalization of such a condition could play
an important role in analysing the integrability of dynamical systems with fermionic
degrees of freedom. Moreover, it seems natural to think that such a generalization
could come from a graded generalization of some of the following relations which
are available in the bosonic case:

(a) Np =0 = Im T is a Lie algebra.

(b) Np =0, d(TdH) =0 = d(T*dH) =0.

(¢} Np =0 <= dpody = 0; here dp is a suitable generalization of the exterior
derivative associated with any (1,1) tensor field [21].

(d) T =: AT' 0 A,, Np = 0 <> A, + A, satisfies the Jacobi identity. Here A,
and A, are two Poisson structures.

(&) w(X,Y) =:[TX,Y]+[X,TY]- T(X,Y]; Tw(X,Y) = [TX, TY] (this
is the same as Ny = 0) <= [ X, Y], =: [X, Y] + dw(X,Y) satisfies the
Jacobi identity for any value of the real parameter A.

One could expect that some, if not all, of the previous relations do not hold true
in the graded situation.
give a brief review of the graded differential calculus on supermanifolds which will
be followed by the study of some simple examples.

3. Graded differential calculus

We review some fundamentals of supermanifold theory [10, 23] while referring to the
literature for a mathematically coherent definition [3,24]. In the following, by graded
we shall always mean Z,-graded.

The basic algebraic object is a real exterior algebra B; = (B), @ (By), with
L generators. An (m,n)-dimensional supermanifold is a topological manifold S

Aallad 4
modelled over the ‘vector superspace

By =(Bp)g x (Bt (5)

by means of an atlas whose transition functions fulfil a suitable ‘supersmoothness’
condition. A supersmooth function f: U C B["" — B, has the usual superfield
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expansion
f@'ooa™, 000 = fo(2)+ Y F(2)0° 44 L (2)6 6" (6)
a=1

where the zs are the even (Grassmann) coordinates, the s are the odd ones, and
the dependence of the coefficient functions f_ (z) on the even variables is fixed by
their vatues for real arguments.

We shall denote by G(S) and G(U) the graded ring of supersmooth B -valued
functions on S and U C S, respectively.

The class of supermanifolds which, up to now, turns out to be relevant for appli-
cations in physics is given by the De Witt supermanifolds. They are defined in terms
of a coarse topology on B7"'", called the De Witt topology, whose open sets are
the counterimages of open sets in R™ through the body map ™™ : B{*™ — R™.
An (m,n) supermanifold is De Witt if it has an atlas such that the images of the
coordinate maps are open in the De Witt topology. A De Witt (m, n) supermanifold
is a locally trivial fibre bundle over an ordinary m-manifold S, (called the body of
S} with a vector fibre [23]. It is these not surprising that, modulo some technicalities,
a De Witt supermanifold can be identified with a Berezin—Konstant supermanifold
[4,14].

The graded tangent space T'S is constructed in the following manner. For each
z € S, let G(x) be the germs of functions at =, and denote by 7,5 the space of
graded B -linear maps X : G(x) — B, which satisfy the Leibnitz rule. Then, T, S
is a free graded B;-module of dimension (m, n), and the disjoint wnion | J, .5 7,8
can be given the structure of a rank (i, n) super vector bundle over S, denoted by
TS. The sections X'(S) of TS are a graded G(.5)-module and are identified with
the graded Lie algebra Der G(S) of derivations of G(S). Derivations (or vector
fields) are said to be even (or odd) if they are even (or odd) as maps (satisfying in
addition a graded Leibnitz rule) from G(S) — G(S). A local basis is given by

a be) 8 a
aml "2 a.m A4l ' gan (7)
L A L [P AT, w

v

Remark. Unless explicitly stated, by vsing a partial derivative we shall always mean a
left derivative, namely a derivative acting from the left. In general, if z* = (=7, 9%),
when acting on any homogeneous function f € G(.5), left and right derivatives are
related by

— —

5‘?;’_ = (_1)p(2')[p(f)+1]f% ie{l,...,m+n}. (8)

In a similar way one defines the cotangent space and bundle. T} S is the space
of graded B, -linear maps from T,(S) — By and T*S = |J,s T3S. T3S is a
free graded B, -module of dimension (m,n), while 7*§ is a rank (m,n) super
vecior bundle over S. The sections X(S)* of T*S are a graded §{S)-maodule and
are identified with the graded G(S)-linear maps from Der G(S) — ¢(S). They are
the 1-forms on S. Forms are said to be even (or odd) if they are even (or odd) as
maps X (M) — G(9).

In general, a p covariant and ¢ contravariant graded tensor is any graded G(S)-
multilinear map o : X(8) x - x X(S) x X(S)y x -+ x X(8) — G(85) (p X(5)
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factors and ¢ X(S)* factors). The collection of all rank (p,q) tensors is a graded
G(S)-module.

A graded p-form is a skew-symmetric covariant graded tensor of rank p. We
denote by Q7(S) the collection of all p-forms. The exterior differential on S is
defined by letting X_ld f = X(f) Vf € G(S), X € X(S) and is extended to maps
Qr(8) — QFFI(S), p > 0, in the usual way, so that d> = 0. If X, € X(S) are
homogeneous elements,

p+1l i
XiA A X,y Jde =) (1) X((XA LY A X o)

i=1

+ Y (PO XIAXA LY LY A e ()
1gi<igo
where
i-1

a(D) =1+i+p(X)) ) p(Xy)

h=1

i-1 i-1 (10)
b(i, ) =i+ 5 +p(X) Y p(Xa) +p(X;) Y p(Xy).

h=1 Asl

By definition one has that p(d) = 0.
The Lie derivative L, of forms is defined by
Ly : X(S) x QP(8) — QF(S)
(11)

Ly=X_Jod+doX_] ¥X € X(5).

Clearly, p(Lx) = p(X).
The Lie derivative of any tensor product can be defined in an obvious manner by
requiring the Leibnitz rule and can be extended to any tensor by using linearity.
Suppose now that we have a tensor T € 7! ( M) which is homogeneous of degree
p(T). Again we can define two graded endomorphisms of X(S) and X(S)" by the
formulae (in the following two formulae X, Y are homogeneous elements in X(S)
while « is any element in X(S)")

T:x(8) — x(S) T :X(8) — X(S) -
T(X,a)=: TX Ja=: (-1)PFPDX_|Tqa.

We could be tempted to define a graded Nijenhuis torsion of T by a relation
analogous to (2)

ENp(X,Y;0) =:Hp(X,Y) ]a
SHp(X,Y) =: TY[X, Y] + (-1)PTPNTX, TY] - TTX,Y] (13)
- (=1)PTRXYTX, TY].

Proposition 2. The map FHy : X(8) x X(S) — X(S) defined in (13) is G( S)-linear
and graded antisymmetric if and only if p(7') = 0.
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Proof. Just compute.

Remark. When p(T) = 1, the map defined in (13) is not antisymmetric or linear
over even functions, nor when it is restricted to even vector fields. Therefore (12)
and (13) define a graded tensor (which is in addition graded antisymmetric) if and
only if p(T) = 0.

4. Poisson supermanifold

We briefly describe how to introduce super Poisson structures on an (m,n)-
dimensional supermanifold S [4,17]. For additional results see also [5]. As before,
we shall denote by z*' = («7,0%), i € {1,...,m + n} the local coordinates on S.
The following proposition is in {4] and can be proved by direct calculations.

Proposition 3. Let Jjw'il| be a (m+n) x (m+n) matrix (depending upon the point
z € §) with the following properties:
(1) the elements w*/ are homogeneous with parity p(w'/) = p(2*)+p(27)+p(w)
and p(w) not depending on the indices ¢ and j;

)

Wit = — (= 1)+ p(w)] s (14)

&)

PR )] is 8 it (1 \pCGDp@lp(e el e O i
(-1 W oW (-1 Wi oW

—

" (_,1)[p(zf)+p(w)1[p(z')+p<w)]w;'a%wu -9, (15)

Then, the following bracket

G (16)

makes G(.S) a Lie superalgebra (Poisson superstructure).

We have two different kinds of structure: For p(w) = 0, an even Poisson struc-
ture; for p(w) = 1 an odd Poisson structure. Indeed, one can check that the bracket
(16) has properties
(F,G}= _(_1)[p(F)+p(w)llp(G)+p(w)1{G, F} 17
(=1)PEMP@NP I+ F G}, H) + (__1)[9(G)+p(w)][p(F‘)+r(w)]{{G, H}, F}

+ (=)l E+P@IPEHP@l F F} G} = 0. (18)
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We infer from (17) and (18) that, when thought of as elements of the Poisson
superalgebra, homogeneous elements of G(S) preserve their parity if p(w) = 0, while
they change it if p(w) = 1.

If the matrix ||w*/|| is regular, then its inverse |jw;; |} , w;;w’* = 6% , gives the
components of a symplectic structure w = 1dz* A dz/w;; , namely, w is closed and
non-degenerate with the properties

p(wi;) = (=) + p(+7) + plw)
o (19)
wj; = ,_,(_1)10(2‘)?(2’)“,',3,

and w is homogeneous with parity just equal to p(w).

There is also a Darboux theorem [17]

A iwis s

Proposition 4. Let (S,w) be an (wmn,n)-dimensional symplectic manifold with w
homogeneous. Then

(1) If p(w) = 0, then dim § = (2r,n) and there exist local coordinates such

that
. . . . 0 I, 0
w=dg'Adp' +d& AdE’ w;=|-1I. © . (20)
0 0 I,
(2) If p{w) = 1, then dim S = (m,m) and there exist local coordinates such
that
i | — 0 Im
w=du' Adé wy = (_Im o ) . (21)

Having a Poisson structure we can deal with Hamilton equations. From (16), if
H is the Hamiltonian, the corresponding equations are

-

=wi o, (22)

827

X
z

Now we would like to maintain the possibility of explicitly constructing the flow
of (22). This requires that the dynamical evolution be an even vector field. In turn
this implies that the Poisson structure and the Hamiltonian function should have the
same parity; in particular, with an odd Poisson structure we need an odd Hamiltonian

function.

5. Examples

Before we analyse the graded Nijenhuis condition we present a few examples.
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5.1. Mixed bosonic—fermionic harmonic oscillator
The mixed bosonic-fermionic harmonic oscilator in (2,2) dimensions is described
with coordinates (q,p,n,£) and has the following equations of motion

a=p pP=-q 0= E=-7. (23)

Equations (23) can be given two Hamiltonian descriptions. The Hamiltonians are:
the usual even one

H=1p*+¢")+itn (24)
and an odd one
K=p{+an (25)
while the two Poisson structures are respectively
0 100 0 -1 0 0
N R
0 0 0 i 0 0 0 -i
and
0 0 0 1 0 0 0 -1
A=lo 1 0 o] “x={0ho0a0] @
-1 0 0 0 1 0 0 0O
We can construct a a mixed invariant tensor field T by
0 ¢ 1 0
T=wgohe=[g % o ¢ (28)
i 0 00
However, this odd tensor field (p(T) = 1) is not a recursion operator, One can easly
find that
TdK =dH

(29)
TdH = -i(dg) +i(dp)n —i(dn)p +i(d&)q d(TdH) #0.
If we evaluate the Poisson brackets of the coordinate variables with the two
symplectic structures (26) and (27) we find that

{e,plp=1 {p.aly=-1 {mnly =i {&,&w =i (30)
and
{q,E}K =1 {‘E!Q}K = -1 {Pa W}K =-1 {T?,P}K =1 (31)

the remaining ones being identically zero. We see that the sum {.,-}, of the two
structures is itself a Poisson structure with the property

{F,G}, = ~(-1)PFPONG, F}, (32)

but it has no definite parity. Moreover {-, -}, is degenerate.
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5.2. Winten dynamics [28]

Interesting examples come from supersymmetric dynamics. It has been shown [25,27]
that the dynamics of Witten’s Hamiltonian systems [28] can be given a bi-Hamiltonian
description with an even Poisson bracket and Grassmann-even Hamiltonian or with
an odd bracket and Grassmann-odd Hamiltonians. Instead of considering the general
case we shall study a supersymmetric Toda chain with coordinates (q, p, n,£).

The even Hamiltonian is given by

H = 1(p> +e%) + Li€ne?/2. (33)
With the even Poisson structure
o0 0 -1 ¢ ©
—_ ( 1 0 0 0\ — (1 0 0 0 \ AN
“”_\0 i 0} "””'_ko 0 —i 0} )
0 i 0 0 0 -i
the equations of motion read
Gg=p p=—lel— %i,fne"'/2 T %feq"z £ = —1net/?, (35
Then the foilowing functions are constants of the motion:
K=pt+et/?y  L=pn-e/?t F=ity. (36)

We can use K in (36) (or L) as an alternative Hamiltonian. The corresponding
symplectic structure can be written as

e o A ad on o —af2 3. A -gf2\ L a . aTT
wpe =aghal rapAagie L r])-rupnur,l\ 2”9 )+ dfAdH

—£) + dp(2e~*/*n) + fdH} (37)
where f(q,p,n,£) is a function explicitly given by

f=A{+ Bn

A 1 2r e?/? 2¢9/2 9
(q’ P) - p2 + ot ,———pz + ot og p + \/p2 + o? + \/p2 + s - (38)

1 2e?/? ed/? 2p
B{q,p) = | - - 2pe™9/2] |
@P = (\/pz-i-eq °¢ (p+ \/p2+e?) Vet

If T is the dynamical vector field of the Toda system, as given by (35), then the
function £ is such that ipd f = e~%/2n and this, in turn, assures that irw, = d K.
It take some algebra to check that the (1,1) tensor field

T=wgoAy

TdH =dK
(39)
d(T?dH) # 0.

Again, T in (38) is not a recursion operator.
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6. Super Nijenhuis torsion

One of the most relevant consequences deriving from a (non-graded) (1-1) tensor
field T with vanishing Nijenhuis torsion is the possibility of generating sequences of
exact 1-forms according to

Proposition 5.
Ny=0 d(TdF)=0==d(T*dF)=0. (40)

Proof. Let o be any 1-form. By using the expression of the exterior derivative, after
some algebra one finds that

XAY JAT?)={XATY +TXAY} Jd(Ta)- {TX ATY}_jda
~H (X,Y) e (41)

where Hy is defined in (3). Assume now that both « and T« are closed. From (41)
we see that T2« is closed if and only if Hy = 0, namely if and only if the Nijenhuis
torsion of T vanishes.

Let us analyse now the graded situation. Suppose T is a graded (1,1) tensor
field which is homogeneous of parity p(T). Then, if « is any 1-form, by using
definition (9), after some (graded) algebra, the analogue of (41) reads

XAY_d(T?a) = {(-1)P TP X ATY
+ (=1)PDMEXHPYNTX A Y} _|d(Ta)
—(-1)POPCHPDITX ATY_Jda — (-1)PT) CHL(X,Y)_ ]«
+ (=)D — (~1)P D] Ly (TY ) “?)

where “Hy is defined in (13).

It is clear then, that for a (1,1) odd tensor a (2,1) tensor corresponding to its
torsion (super Nijenhuis torsion) can be defined only when p(T) = 0. The same
result is attained with the use of the general approach dpodp =0.

7. Conclusions

Summing up, we have shown that there are examples of dynamical systems whose
dynamical vector field ' admits two Hamiltonian descriptions, odd and even, and
that the tensor field T constructed out of the corresponding Poisson structures is not
a recursion operator since it cannot generate new integrals of motion after the first
wo.
We have also shown that this fact is general and that for a generic graded (1,1)
tensor field 7" a graded Nijenhuis torsion cannot be defined unless T is even.

From the nature of the proof it seems plausible that a similar theorem should
hold true also in infinite dimensions.

The ‘no go’ theorem we have proved in our paper does not exhaust, obviously,
the analysis of complete integrability for graded Hamiltonian systems, Much more
attention must be paid, however, in generalizing to the graded case geometrical
structures which play a relevent and natural role in the non-graded situation.
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